Multipotent neural precursors can differentiate toward replacement of neurons undergoing targeted apoptotic degeneration in adult mouse neocortex.
نویسندگان
چکیده
Neurons undergoing targeted photolytic cell death degenerate by apoptosis. Clonal, multipotent neural precursor cells were transplanted into regions of adult mouse neocortex undergoing selective degeneration of layer II/III pyramidal neurons via targeted photolysis. These precursors integrated into the regions of selective neuronal death; 15 +/- 7% differentiated into neurons with many characteristics of the degenerated pyramidal neurons. They extended axons and dendrites and established afferent synaptic contacts. In intact and kainic acid-lesioned control adult neocortex, transplanted precursors differentiated exclusively into glia. These results suggest that the microenvironmental alterations produced by this synchronous apoptotic neuronal degeneration in adult neocortex induced multipotent neural precursors to undergo neuronal differentiation which ordinarily occurs only during embryonic corticogenesis. Studying the effects of this defined microenvironmental perturbation on the differentiation of clonal neural precursors may facilitate identification of factors involved in commitment and differentiation during normal development. Because photolytic degeneration simulates some mechanisms underlying apoptotic neurodegenerative diseases, these results also suggest the possibility of neural precursor transplantation as a potential cell replacement or molecular support therapy for some diseases of neocortex, even in the adult.
منابع مشابه
Embryonic neurons transplanted to regions of targeted photolytic cell death in adult mouse somatosensory cortex re-form specific callosal projections.
In the neocortex, the effectiveness of potential transplantation therapy for diseases involving neuronal loss may depend upon whether donor neurons can reestablish the precise long-distance projections that form the basis of sensory, motor, and cognitive function. During corticogenesis, the formation of these connections is affected by tropic factors, extracellular matrix, structural pathways, ...
متن کاملNeural precursor differentiation following transplantation into neocortex is dependent on intrinsic developmental state and receptor competence.
Reconstruction of neocortical circuitry by transplantation of neural precursors, or by manipulation of endogenous precursors, may depend critically upon both local microenvironmental control signals and the intrinsic competence of populations of precursors to appropriately respond to external molecular controls. Dependence on the developmental state of donor or endogenous precursor cells in ach...
متن کاملMature astrocytes transform into transitional radial glia within adult mouse neocortex that supports directed migration of transplanted immature neurons.
Neuronal migration is an essential step in normal mammalian neocortical development, and the expression of defined cellular and molecular signals within the developing cortical microenvironment is likely crucial to this process. Therapy via transplanted or manipulated endogenous precursors for diseases which involve neuronal loss may depend critically on whether newly incorporated cells can act...
متن کاملLate-stage immature neocortical neurons reconstruct interhemispheric connections and form synaptic contacts with increased efficiency in adult mouse cortex undergoing targeted neurodegeneration.
In the neocortex, the effectiveness of potential cellular repopulation therapies for diseases involving neuronal loss may depend critically on whether newly incorporated cells can differentiate appropriately into precisely the right kind of neuron, re-establish precise long-distance connections, and reconstruct complex functional circuitry. Here, we test the hypothesis that increased efficiency...
متن کاملTransplanted neuroblasts differentiate appropriately into projection neurons with correct neurotransmitter and receptor phenotype in neocortex undergoing targeted projection neuron degeneration.
Reconstruction of complex neocortical and other CNS circuitry may be possible via transplantation of appropriate neural precursors, guided by cellular and molecular controls. Although cellular repopulation and complex circuitry repair may make possible new avenues of treatment for degenerative, developmental, or acquired CNS diseases, functional integration may depend critically on specificity ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 94 21 شماره
صفحات -
تاریخ انتشار 1997